
Summary of Lecture 6

• We learnt the equivalence between convolution and linear filtering.

• We reviewed two dimensional Fourier transforms of 2-d sequences.

• We discussed various properties of Fourier transforms and in particular
we saw that the Fourier transform “converts” convolution to multi-
plication.

• Using the Fourier transform properties of Kronecker and Dirac delta
functions we learnt about sampling and aliasing.
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Definition of the 2-D Fourier Transform

The 2-D Fourier Transform of a 2-D sequence A, F(A) is defined as:

F(A) = FA(w1, w2)

=
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)e−j(mw1+nw2) − π ≤ w1, w2 < π (1)

The inverse 2-D Fourier Transform F−1(A) is:

A(m,n) = F−1(A)

=
1

4π2

∫ π

−π

∫ π

−π
FA(w1, w2)e

+j(mw1+nw2)dw1dw2 (2)

A(m,n) F↔ FA(w1, w2)

• A(m,n): two dimensional discrete sequence, m,n vary over integers

• FA(w1, w2): two dimensional 2π periodic function, w1, w2 vary in a continuum.
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Fourier Transform and Convolution

• C = A⊗B

C(m,n) =
+∞∑

k=−∞

+∞∑
k=−∞

A(k, l)B(m− k, n− l)

FC(w1, w2) = FA(w1, w2)FB(w1, w2) (3)
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Sampling and Aliasing

• The sampled sequence:

C(m,n) = A(S1m,S2n) (4)

where S1, S2 > 0 are integers, has Fourier transform:

FC(w1, w2) =
1

S1S2

∑

k∈K(w1)

∑

l∈L(w2)
FA(

w1

S1
− k2π

S1
,
w2

S2
− l2π

S2
) (5)

• For no aliasing to occur after sampling FA(w1, w2) must be:

FA(w1, w2) = 0,
π

S1
< |w1| < π,

π

S2
< |w2| < π (6)
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The Need for a “Computable” Fourier Transform

• The 2-D Fourier transform has many useful properties for the analysis
of 2-D sequences and convolution.

• Unfortunately this Fourier transform can be computed explicitly for
only some simple sequences.

– The Fourier transform variables w1, w2 vary in a continuum.
Thus the Fourier transform FA(w1, w2) of a sequence A(m,n) can-
not be directly computed by a digital computer.

• We will now define “another” Fourier transform which is computable
and enjoys similar nice properties.
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The 2-D DFT for Finite Extent Sequences

Let A(m,n) be a finite extent sequence, i.e.,

A(m,n)





6= 0, 0 ≤ m ≤ M1 − 1, 0 ≤ n ≤ N1 − 1

= 0 otherwise

The [M1, N1] point 2-D Discrete Fourier Transform (DFT) of A is defined
as:

DFA(k, l) =
M1−1∑

m=0

N1−1∑

n=0
A(m,n)e

−j(2πk
M1

m+2πl
N1

n)
, k = 0, . . . , M1 − 1, l = 0, . . . , N1 − 1 (7)

A(m,n) can be obtained “back” from DFA(k, l) via:

A(m,n) =
1

M1N1

M1−1∑

k=0

N1−1∑

l=0
DFA(k, l)e

j(2πm
M1

k+2πn
N1

l)
(8)
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The 2-D DFT and the 2-D FT

Remembering that A(m,n) is a finite extent sequence let us compare the
definitions of the two Fourier transforms:

DFA(k, l) =
M1−1∑

m=0

N1−1∑

n=0
A(m,n)e

−j(2πk
M1

m+2πl
N1

n)
, k = 0, . . . , M1 − 1, l = 0, . . . , N1 − 1

FA(w1, w2) =
M1∑

m=0

N1∑

n=0
A(m,n)e−j(mw1+nw2) − π ≤ w1, w2 < π

• The 2-D DFT is a sampled version of FA(w1, w2), i.e.,

DFA(k, l) = FA(
2πk

M1
,
2πl

N1
) (9)

Noting that FA(w1, w2) is periodic with 2π:

k = 0 → w1 = 0

k = M1 − 1 → w1 =
2π(M1 − 1)

M1
= 2π − 2π

M1
= − 2π

M1

k = M1/2 → w1 = π if M1 even

k = (M1 − 1)/2 → w1 = π − π

M1
if M1 odd

and similarly for l and w2.
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Example
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The 2-D DFT and the 2-D FT contd.

Now let us take a look at the inverse transforms:

A(m,n) =
1

M1N1

M1−1∑

k=0

N1−1∑

l=0
DFA(k, l)e

j(2πm
M1

k+2πn
N1

l)

A(m,n) =
1

4π2

∫ π

−π

∫ π

−π
FA(w1, w2)e

+j(mw1+nw2)dw1dw2

Note that the Fourier transform and its inverse are defined for any sequence
whereas the DFT is only defined for finite extent sequences.

Using the inverse DFT and noting that e
j

2πM1
M1 = 1 we can see that:

A(m,n) =
1

M1N1

M1−1∑

k=0

N1−1∑

l=0
DFA(k, l)e

j(2πm
M1

k+2πn
N1

l) × e
j

2πM1
M1 e

j
2πN1
N1

=
1

M1N1

M1−1∑

k=0

N1−1∑

l=0
DFA(k, l)e

j(
2π[m+M1]

M1
k+

2π[n+N1]
N1

l)

= A(m + M1, n + N1) ! (10)

i.e., if we “forget” that A is finite extent, then the inverse DFT will re-
construct a periodic sequence which is called the periodic extension of A.
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The 2-D DFT and Periodic Extensions

• The periodic extension property is normally not a problem since we
can always do an inverse DFT for 0 ≤ m < M1, 0 ≤ n < N1.

• Consider however the DFT and its inverse for C = A⊗B.

– We already know that if A and B are finite extent (A (M1×N1),
B (M2 ×N2)) then C is finite extent (M1 + M2 − 1×N1 + N2 − 1).

– DFC(k, l) must therefore be computed via a [M1+M2−1, N1+N2−1]

point DFT.
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The 2-D DFT and Convolution

Let A and B be finite extent sequences (A (M1 ×N1), B (M2 ×N2)).

• The [M1 + M2 − 1, N1 + N2 − 1] point DFT of C = A⊗B is given as:

DFC(k, l) = DFA(k, l)[M1+M2−1,N1+N2−1] ×DFB(k, l)[M1+M2−1,N1+N2−1] (11)

• (If A and B are matrices, the [M1 + M2 − 1, N1 + N2 − 1] point DFT
of A can be computed by extending or “padding” A with zeros and
similarly for B).

• Will suppress the DFX(k, l)[M1+M2−1,N1+N2−1] notation with the under-
standing that the various DFTs are computed to the required point.

• Artifacts caused by not computing the DFTs to the required point are
due to time aliasing.
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Computing the 2-D DFT and Convolutions

• The DFT can be computed by a fast algorithm known as the FFT
(Fast Fourier Transform). In matlab:

>> DFA = fft2(A,M1, N1);

where M1, N1 denote the point to which DFT is computed.

• The convolution C = A⊗B of finite extent sequences A (M1×N1) and
B (M2 ×N2) can be computed using the fft algorithm via:

>> DFA = fft2(A,M1 + M2− 1, N1 + N2− 1);

>> DFB = fft2(B,M1 + M2− 1, N1 + N2− 1);

>> DFC = DFA. ∗DFB;

>> C = ifft2(DFC, M1 + M2− 1, N1 + N2− 1);

where ifft2 denotes the inverse fft algorithm and M1 = M1, N1 = N1,

etc.
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DFT and fftshift

• The [M1, N1] DFT of an M1 × N1 image will have the low frequencies
around k = 0, k = N1 − 1 and l = 0, l = M1 − 1 (see also earlier plot).

• When we plot image DFTs as images it is convenient to have the low
frequencies at the center of the plot.

• This shift for viewing convenience can be done via the fftshift command
in matlab.
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DFT and fftshift contd.

>> DFA = fft2(A,M1, N1);

>> DFA2 = fftshift(DFA);

>> image(mynormalize(abs(DFA2)));

• fftshift in matlab will center the low frequencies for viewing conve-
nience.

• Note that DFA2 6= DFA and thus ifft2(DFA2,M1, N1) 6= ifft2(DFA,M1, N1).

• DFA can be obtained from DFA2 by doing another fftshift, i.e., DFA =

fftshift(DFA2).
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Example
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DFTs of Natural Images
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Importance of Low Frequencies

The importance of low frequency coefficients of image DFTs can be demon-
strated as follows:

• Let A be M1 ×N1. Let

R1 = {i|(0 ≤ i ≤ W1) or (M1 −W1 ≤ i ≤ M1 − 1)}
R2 = {i|(0 ≤ i ≤ W2) or (N1 −W2 ≤ i ≤ N1 − 1)}.

Define a (2W1 + 1)× (2W2 + 1) window “around” the low frequencies by

w(k, l) =





1 k ∈ R1 and l ∈ R2

0 otherwise
(12)

• Consider DFC(k, l) = DFA(k, l)w(k, l). This “keeps” (2W1 + 1) × (2W2 + 1)

DFT coefficients and zeros out the rest.

• We are interested in the mean squared error given by
1/(M1N1)

∑M1−1
m=0

∑N1−1
n=0 (A(m,n)− C(m,n))2.

• Note that as W1,W2 increase we are adding more and more high coef-
ficients to the set of coefficients that we keep.
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Low Frequency Window

w for W1 = W2 = 100 (normalized and fftshifted)

The window can be implemented in matlab via

>> r1 = zeros(M1, 1);

>> r1(1 : W1 + 1,M1−W1 + 1 : M1) = 1;

>> r2 = zeros(N2, 1);

>> r2(1 : W2 + 1, N1−W2 + 1 : N1) = 1;

>> w = r1 ∗ r2′;

Given DFC(k, l) = DFA(k, l)w(k, l), matlab may make small numerical errors
in the inverse transform leading to complex valued images. C(m,n) is best
reconstructed via:

>> C = real( ifft2(w. ∗DFA));
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Example
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Example
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Convolution by DFTs

• Since the DFT can be computed with a fast algorithm it may be
beneficial to do the convolution of two sequences A (M1 × N1) and B

(M2 ×N2) via [M1 + M2 + 1, N1 + N2 + 1] point DFTs.

• However, speed improvements are only possible if both sequences have
large dimensions. Otherwise convolutions are better implemented via
the convolution sum.
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Summary

• In this lecture we learnt the 2-D DFT of two dimensional finite extent
sequences.

• We learnt how to calculate convolutions using DFTs.

• We learnt about basic properties of the DFTs of natural images.
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Homework VII

1. Calculate the DFT of your image. Show the magnitude and phase both before and after using

fftshift. Use the log10 point function on magnitude plots and normalize as necessary.

2. Subsample your image by 2 in each direction and calculate the DFT of the result in two ways:

(a) Since the subsampled image has half the dimensions of the original, calculate the DFT

to the point of the reduced dimensions.

(b) Calculate the DFT to the point of the original dimensions.

Show magnitude and phase plots for both. Compare the results to 1. above. Can you explain the

differences?

3. Calculate the convolution of your image with itself by using DFTs.

4. Do the processing I did on Pages 19-20. Show the resulting images and the mse plot.
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